纤维构造
走向生物基和仿生建筑
斯图加特大学计算设计与施工研究所(ICD)和建筑结构与结构设计研究所(ITKE)开发了一种由亚麻纤维和木板制成的新型混合建筑系统,旨在将有效性结合起来具有生物基纤维材料生态优势的仿生纤维结构。通过先进的设计计算和模拟以及机器人制造工艺,并基于从天然纤维系统转移的设计原理,这项研究开辟了建筑中纤维增强复合材料结构的新方法。
Fiber structure
Towards Biobased and Biomimetic Architecture
The Institute of Computational Design and Construction (ICD) and the Institute of Building Structure and Structural Design (ITKE) at the University of Stuttgart have developed a new hybrid building system made of flax fiber and wooden boards, aimed at combining effectiveness with biomimetic fiber structures that have ecological advantages of bio based fiber materials. Through advanced design calculations and simulations, as well as robot manufacturing processes, and based on the design principles transferred from natural fiber systems, this study has opened up a new method for fiber-reinforced composite structures in architecture.
——————
学生援助:Christian Steixner、Alan Eskildsen、Alina Turean、Xi Peng、Weiqi Xie
合作伙伴: FibR Gmbh 斯图加特
项目支持:斯图加特大学建筑综合计算设计与施工卓越集群 (IntCDC)
Fiber Construction | Moving towards Biobased and Biomimetic Architecture
---
作为罗马 MAXXI 博物馆 Technoscape 展览的一部分,全尺寸原型展示了两个研究所研究中的这一重要一步。大型纤维板结构探索了新颖的、受生物启发的和基于生物的构造,这些构造同时具有物质效率、生态效益和建筑表现力,并讲述了技术、生物和文化之间深刻的相互关系。
As part of the Technoscape exhibition at the MAXXI Museum in Rome, the full-size prototype showcases this important step in the research of two institutes. The large-scale fiberboard structure explores novel, biologically inspired, and biologically based structures that simultaneously possess material efficiency, ecological benefits, and architectural expressiveness, and narrates the profound interrelationships between technology, biology, and culture.
生物学和建筑学中的纤维形态
在生物学中,大多数承重结构都是纤维复合材料。它们由纤维元件组成,纤维元件嵌入包围并支撑纤维增强材料的基质材料中。因此,纤维保持其相对位置并表现出高拉伸强度,使其能够承受压缩力。虽然复合材料中的纤维和基体元素仍然不同,但它们的组合所产生的卓越性能特征远远超出了各个组成部分的性能特征。
Fiber morphology in biology and architecture
In biology, most load-bearing structures are fiber composite materials. They are composed of fiber components, which are embedded in the matrix material that surrounds and supports the fiber reinforced material. Therefore, fibers maintain their relative position and exhibit high tensile strength, enabling them to withstand compressive forces. Although the fibers and matrix elements in composite materials are still different, the excellent performance characteristics generated by their combination far exceed the performance characteristics of each component.
生物纤维结构令人惊叹的功能集成、性能能力和资源效率是通过形态分化实现的,形态分化是每个元素对其特定性能要求和环境影响进行精细校准的适应的总结过程。由于这种分化主要是通过改变纤维组织和布局来实现的,因此生物学可以理解为为建筑设计提供了丰富的纤维排列方式。
The amazing functional integration, performance capability, and resource efficiency of biological fiber structures are achieved through morphological differentiation, which is the summary process of fine calibration of each element's specific performance requirements and environmental impacts. Due to the fact that this differentiation is mainly achieved through changes in fiber tissue and layout, biology can be understood as providing a rich arrangement of fibers for architectural design.
ICD 和 ITKE 在多个项目中研究了建筑相关计算设计、模拟和制造工艺的发展。作为重要的下一步,仿生纤维形态的研究现已扩展到生物基纤维材料,例如大麻和亚麻纤维。这些区域可用的材料可在较短的作物周期内再生,并提供将差异化、适应负载的纤维结构的有效性与使用天然材料的生态效益相结合的可能性。
ICD and ITKE have studied the development of architectural related computational design, simulation, and manufacturing processes in multiple projects. As an important next step, research on biomimetic fiber morphology has now expanded to bio based fiber materials, such as hemp and flax fibers. The materials available in these areas can be regenerated within a shorter crop cycle and provide the possibility of combining the effectiveness of differentiated and load adapted fiber structures with the ecological benefits of using natural materials.
新型纤维混合建筑系统
对建筑中纤维形态的多学科设计研究提供了一些有趣的见解。直接使用线性纤维或纤维粗纱,而不是预制的纤维垫或纺织品,为设计提供了重要的新可能性。将每根纤维在空间中跨多个层次结构单独定向的能力开始模糊材料和结构之间的界限,从而将设计范围扩展到“可设计”物质性的领域。与具有定义的材料属性的零件组装相比,在这里一个整体结构内的材料特性的局部差异成为可能。
New fiber hybrid building system
The interdisciplinary design research on fiber morphology in architecture provides some interesting insights. Directly using linear fibers or fiber roving instead of prefabricated fiber mats or textiles provides important new possibilities for design. The ability to individually orient each fiber across multiple hierarchical structures in space begins to blur the boundaries between materials and structures, thereby expanding the design scope to the realm of "designable" materiality. Compared to the assembly of parts with defined material properties, local differences in material properties within an overall structure become possible here.
“纤维构造”旨在在建筑纤维系统的技术和文化维度与自然界丰富的纤维形态之间架起桥梁。全尺寸仿生板结构完全由生物基材料制成。 5m x 5m 的板由四个较小的纤维模块组成,这些模块暴露了板底部的精细分化纤维。与楼板顶部的木板相结合,纤维和木质部件共同构成一种新颖的混合结构,这是 ICD/ITKE 项目 Maison Fibre 的关键元素,该项目利用了传统的技术玻璃和碳纤维,在 2021 年威尼斯建筑双年展上展出。与威尼斯的装置形成鲜明对比的是,MAXXI 展品完全由天然亚麻纤维制成。这展示了当今的技术如何实现基于生物启发设计原理、先进计算方法和机器人流程以及生物基材料的新型建筑系统。由此产生了扩展甚至重新思考既定的建筑构造规范作为可持续的未来建筑环境的关键组成部分的机会。
Fiber construction aims to bridge the technical and cultural dimensions of building fiber systems with the rich fiber forms in nature. The full-size biomimetic board structure is entirely made of bio based materials. The 5m x 5m board consists of four smaller fiber modules that expose the finely differentiated fibers at the bottom of the board. Combined with the wooden boards at the top of the floor slab, fiber and wooden components together form a novel hybrid structure, which is a key element of the ICD/ITKE project Maison Fiber. The project utilizes traditional techniques of glass and carbon fiber and was exhibited at the 2021 Venice Architecture Biennale. In stark contrast to the installations in Venice, MAXXI exhibits are entirely made of natural linen fibers. This demonstrates how today's technology enables new building systems based on bioinspired design principles, advanced computing methods and robot processes, as well as bio based materials. This has given rise to opportunities to expand and even rethink established building construction standards as key components of a sustainable future building environment.
项目信息
CD - 斯图加特大学计算设计与建造研究所:Prof. Achim menges
Katja Rinderspacher、Christoph Schlopschnat、Christoph Zechmeister、Niccolo Dambrosio、Rebeca Duque Estrada、Fabian Kannenberg
ITKE 斯图加特大学建筑结构与结构设计研究所:Jan Knippers 教授 、Marta Gil Pérez、YananGuo
学生援助:Christian Steixner、Alan Eskildsen、Alina Turean、Xi Peng、Weiqi Xie
合作伙伴: FibR Gmbh 斯图加特
项目支持:斯图加特大学建筑综合计算设计与施工卓越集群 (IntCDC)
版权©策站网cezn.cn,欢迎转发,禁止以策站编辑版本进行任何形式转载