斯图加特大学计算设计与施工研究所 (ICD) 和建筑结构与结构设计研究所 (ITKE) 完成了一个新的研究馆,探索玻璃和碳纤维增强复合材料的建筑规模制造。这种新颖的工艺基于纤维结构的独特功能和特性。由于这些材料重量轻且具有高拉伸强度,因此可以采用完全不同的制造方法,该方法将低有效负载但远程的机器(例如无人机(UAV))与强大、精确但范围有限的工业机器结合起来。机器人。这种协作概念为长跨度纤维复合材料结构提供了可扩展的制造装置。该研究建立在一系列成功展馆的基础上,研究综合计算设计、工程和制造,并探索其空间影响和施工可能性。该项目是由建筑师、工程师和生物学家组成的跨学科团队中的学生和研究人员设计和制造的。
The Institute of Computational Design and Construction (ICD) and Institute of Building Structure and Structural Design (ITKE) at the University of Stuttgart have completed a new research facility to explore the large-scale manufacturing of glass and carbon fiber reinforced composite materials in buildings. This novel process is based on the unique functions and characteristics of fiber structure. Due to the lightweight and high tensile strength of these materials, a completely different manufacturing method can be used, which combines low payload but remote machines (such as unmanned aerial vehicles (UAVs)) with powerful, precise but limited range industrial machines. Robots. This collaborative concept provides a scalable manufacturing facility for long-span fiber composite structures. This study is based on a series of successful exhibition halls, studying comprehensive computational design, engineering, and manufacturing, and exploring their spatial impact and construction possibilities. This project was designed and manufactured by students and researchers from an interdisciplinary team of architects, engineers, and biologists.
——————
ICD 计算设计与建造研究所 : Achim Menges 教授
ITKE 建筑结构与结构设计研究所:Jan Knippers 教授
科学发展:本杰明·费尔布里奇、尼古拉斯·弗鲁、马歇尔·普拉多、丹尼尔·雷斯、萨姆·萨法里安、詹姆斯·索利、劳伦·瓦西
ICD/ITKE | Research Institute 2016-17
---
轻质、大跨度纤维结构
纤维复合材料在建筑应用中具有巨大的潜力。由于高性能材料特性,它们很容易用于高度工程化的应用,例如汽车和航空航天工业。然而,建筑内部的潜力在很大程度上仍未得到开发。在建筑规模生产中,大跨度结构高度关注材料自重,而轻质纤维复合材料可提供无与伦比的性能。然而,我们目前缺乏足够的纤维复合材料制造工艺来进行这种规模的生产,同时又不影响建筑和设计行业所需的设计自由度和系统适应性。传统的制造方法需要全尺寸的表面模具,并且通常将流程限制为相同零件的系列化生产。 ICD 和 ITKE 之前的研究探索了纤维复合材料结构,无需表面模具或昂贵的模板。这些新颖的制造工艺已被用来创建高度差异化的多层结构、功能集成的建筑系统和大型元件组件。他们使相对可成形的材料摆脱了传统纤维复合材料制造工艺的限制。然而,这些早期研究的规模受到所使用的工业机器人手臂的工作空间的限制。 2016-17 年 ICD/ITKE 研究馆的目标是设想一种可扩展的制造工艺,并通过开发长跨度连续纤维结构的制造工艺来测试建筑应用的替代方案。
Lightweight, large-span fiber structure
Fiber composite materials have enormous potential in building applications. Due to the characteristics of high-performance materials, they are easily used in highly engineered applications such as the automotive and aerospace industries. However, the potential within the building has yet to be fully developed to a large extent. In large-scale production of buildings, the height of large-span structures focuses on the weight of materials, while lightweight fiber composite materials can provide unparalleled performance. However, we currently lack sufficient manufacturing processes for fiber composite materials to carry out this scale of production without affecting the design freedom and system adaptability required by the construction and design industry. Traditional manufacturing methods require full-size surface molds and typically limit the process to serial production of the same parts. Previous studies by ICD and ITKE have explored the structure of fiber composite materials without the need for surface molds or expensive templates. These novel manufacturing processes have been used to create highly differentiated multi-layer structures, functionally integrated building systems, and large component components. They have freed relatively formable materials from the limitations of traditional fiber composite manufacturing processes. However, the scale of these early studies was limited by the workspace of the industrial robot arms used. The goal of the ICD/ITKE Research Institute from 2016 to 2017 is to envision a scalable manufacturing process and test alternative solutions for building applications by developing manufacturing processes for long span continuous fiber structures.
过程仿生研究
该项目的重点是并行自下而上的设计策略,用于对大跨度纤维复合材料结构的自然施工过程进行仿生研究,并开发纤维增强聚合物结构的新型机器人制造方法。目的是开发一种跨度更长的纤维缠绕技术,将所需的模板减少到最低限度,同时利用连续纤维的结构性能。因此,与蒂宾根大学进化与生态研究所和古生物学系合作,对自然轻质结构的功能原理和构造逻辑进行了分析和抽象。两种潜叶蛾,Lyonetia clerkella和Leucoptera erythrinella,其幼虫在弯曲的叶子上的连接点之间旋转丝绸“吊床”,被认为对于转移大跨度纤维结构的形态和程序原理特别有希望。从生物角色模型中提取了几个概念,并将其转化为制造和结构概念,包括:将弯曲主动子结构和无芯缠绕纤维增强材料相结合,以创建集成的复合材料缠绕框架、长跨度结构上的纤维取向和层次结构以及用于生成复杂三维几何形状的多阶段体积纤维铺设过程。
Process Biomimetic Research
The focus of this project is on a parallel bottom-up design strategy for biomimetic research on the natural construction process of large-span fiber composite structures, and the development of new robot manufacturing methods for fiber-reinforced polymer structures. The purpose is to develop a longer span fiber winding technology that minimizes the required templates while utilizing the structural properties of continuous fibers. Therefore, in collaboration with the Institute of Evolution and Ecology and the Department of Paleontology at the University of T ü bingen, the functional principles and construction logic of natural lightweight structures were analyzed and abstracted. Two types of leafminer moths, Lyonetia clerkella and Leucoptera erythrinella, whose larvae rotate silk hammocks between connecting points on curved leaves, are considered particularly promising for transferring the morphology and procedural principles of large-span fiber structures. Several concepts were extracted from the biological role model and transformed into manufacturing and structural concepts, including: combining bent active substructures with coreless wound fiber reinforcement materials to create integrated composite material winding frames, fiber orientation and hierarchical structures on long span structures, and multi-stage volume fiber laying processes for generating complex three-dimensional geometric shapes.
多机信息物理制造
创建超出标准工业制造设备工作空间的大跨度结构需要协作设置,多个机器人系统可以在其中进行接口和通信,以创建无缝光纤铺设过程。纤维可以在多台机器之间通过,以确保连续的材料结构。制造过程的概念是基于强大而精确但范围有限的固定机器与精度有限的移动远程机器之间的协作。在具体的实验装置中,两个具有纤维缠绕工作所需的强度和精度的固定工业机械臂被放置在结构的末端,同时利用一个自主的、长距离但不太精确的纤维运输系统来传递纤维从一侧到另一侧,在本例中是定制的无人机。将无人机的不受束缚的自由度和适应性与机器人相结合,开辟了在结构上、周围或穿过结构铺设纤维的可能性,创造了单独使用机器人或无人机无法实现的材料布置和结构性能的潜力。
Multi machine information physics manufacturing
Creating large-span structures beyond the standard industrial manufacturing equipment workspace requires collaborative setup, where multiple robot systems can interface and communicate to create a seamless fiber laying process. Fibers can pass between multiple machines to ensure a continuous material structure. The concept of manufacturing process is based on the collaboration between powerful and precise fixed machines with limited scope and mobile remote machines with limited precision. In the specific experimental setup, two fixed industrial robotic arms with the required strength and accuracy for fiber winding work are placed at the end of the structure, while using an autonomous, long-distance but less precise fiber transport system to transfer fibers from one side to the other, in this case a customized drone. Combining the unrestricted degrees of freedom and adaptability of drones with robots has opened up the possibility of laying fibers on, around, or through structures, creating the potential for material arrangements and structural performance that cannot be achieved by using robots or drones alone.
开发了自适应控制和通信系统,允许多个工业机器人和无人机在整个缠绕和纤维铺设过程中进行交互。集成传感器接口使机器人和无人机能够实时适应制造过程中不断变化的条件。无人机可以自主飞行和着陆,无需人类飞行员,纤维的张力可以根据无人机和机器人的行为进行主动、自适应控制。利用定位系统在机器人和无人机之间创建数字和物理“握手”,以便在整个缠绕过程中来回传递光纤。这一系列的自适应行为和集成传感器为开发用于大规模纤维复合材料生产的新型多机、网络物理制造工艺奠定了基础。
Developed an adaptive control and communication system that allows multiple industrial robots and drones to interact throughout the entire winding and fiber laying process. The integrated sensor interface enables robots and drones to adapt in real-time to constantly changing conditions during the manufacturing process. Drones can fly and land autonomously without the need for human pilots, and the tension of fibers can be actively and adaptively controlled based on the behavior of the drone and robot. Create digital and physical "handshakes" between robots and drones using positioning systems to transfer optical fibers back and forth throughout the entire winding process. This series of adaptive behaviors and integrated sensors have laid the foundation for the development of new multi machine, networked physical manufacturing processes for large-scale fiber composite material production.
综合演示器
2016-17 年 ICD/ITKE 研究馆是通过铺设总计 184 公里的树脂浸渍玻璃和碳纤维而创建的。采用轻质材料系统创建并测试了总长度为 12 m 的单个大跨度悬臂作为极端结构场景。表面面积约40平方米,重量约1000公斤。所实现的结构是在场外制造的,因此尺寸被限制在允许的运输体积内。然而,我们发现该装置的变体适合现场或原位制造,可用于更长的跨度和更大的纤维复合材料结构。
Integrated demonstrator
The ICD/ITKE Research Institute was established from 2016 to 2017 by laying a total of 184 kilometers of resin impregnated glass and carbon fiber. A single large-span cantilever with a total length of 12 meters was created and tested using a lightweight material system as an extreme structural scenario. The surface area is about 40 square meters and the weight is about 1000 kilograms. The implemented structure is manufactured off-site, so the size is limited to the allowed transport volume. However, we found that variants of this device are suitable for on-site or in situ manufacturing, and can be used for longer spans and larger fiber composite structures.
展馆的整体几何形状展示了通过多级体积纤维缠绕制造结构形态的可能性,通过集成弯曲主动复合框架减少不必要的模板,并通过集成机器人和自主轻型无人机制造工艺增加建筑的可能规模和跨度。它探讨了未来的施工场景如何演变为分布式、协作和自适应系统。这项研究通过将结构能力、材料行为、制造逻辑、生物学原理和建筑设计约束纳入综合计算设计和施工,展示了计算设计和施工的潜力。原型展馆是大跨度纤维复合材料结构元件可扩展制造工艺的概念验证,适用于建筑应用。
The overall geometric shape of the exhibition hall showcases the possibility of manufacturing structural forms through multi-level volume fiber winding, reducing unnecessary templates through integrated bending active composite frames, and increasing the possible scale and span of the building through integrated robots and autonomous light drone manufacturing processes. It explores how future construction scenarios can evolve into distributed, collaborative, and adaptive systems. This study demonstrates the potential of computational design and construction by incorporating structural capabilities, material behavior, manufacturing logic, biological principles, and architectural design constraints into comprehensive computational design and construction. The prototype exhibition hall is a conceptual validation of scalable manufacturing processes for large-span fiber composite structural components, suitable for architectural applications.
项目信息
ICD 计算设计与建造研究所 : Achim Menges 教授
ITKE 建筑结构与结构设计研究所:Jan Knippers 教授
科学发展:本杰明·费尔布里奇、尼古拉斯·弗鲁、马歇尔·普拉多、丹尼尔·雷斯、萨姆·萨法里安、詹姆斯·索利、劳伦·瓦西
系统开发、制造和施工:米格尔·阿弗拉洛、巴哈尔·阿尔·巴哈尔、洛特·阿尔丁格、克里斯·阿里亚斯、莱昂纳德·巴拉斯、陈景城、费德里科·福雷斯蒂耶罗、多明加·加鲁菲、佩德罗·贾基尼、基里亚基·戈蒂、萨钦·古普塔、奥尔加·卡利纳、希尔·卡茨、布鲁诺·克尼查拉、沙米尔·拉拉尼、帕特里西奥·拉拉、阿尤布Lharchi、刘东源、Yen Cheng Lu、Georgia Margariti、Alexandre Mballa、Behrooz Tahanzadeh、Hans Jakob Wagner、Benedikt Wannemacher、Nikolaos Xenos、Andre Zolnerkevic、Paula Baptista、Kevin Croneigh、Tatsunori Shibuya、Nicoló Temperi、Manon Uhlen、李汶翰。在 Michael Preisack 和 Artyom Maxim 的支持下。
与合作:飞机设计研究所 (IFB) – 教授、博士、工程师。 P. 米登多夫、马库斯·布兰德尔、弗洛里安·纳丁格
工程大地测量研究所 (IIGS) – 教授、博士、工程师。能够。沃尔克·施维格、奥托·勒克
图宾根大学无脊椎动物进化生物学系 – Oliver Betz 教授
图宾根大学无脊椎动物古生物学系 – James Nebelsick 教授
支持者:大众汽车基金会、盖蒂实验室、库卡机器人有限公司
佩里有限公司、西格里科技有限公司、瀚森斯图加特有限公司
埃德。祖布林股份公司、兰格里特有限公司、温德勒钢厂有限公司
徕卡测量系统有限公司、科菲有限公司
版权©策站网cezn.cn,欢迎转发,禁止以策站编辑版本进行任何形式转载